INVESTIGATIONS ON ORGANOANTIMONY COMPOUNDS III*. ALKYLGROUP EXCHANGE IN THE PREPARATION OF MIXED METHYLETHYL PENTAALKYLANTIMONY COMPOUNDS

H. A. MEINEMA AND J. G. NOLTES

Institute for Organic Chemistry TNO, Utrecht (The Netherlands) (Received December 2nd, 1969)

SUMMARY

The compounds series $Me_nSbEt_{(5-n)}$ with n=0-5 have been prepared. PMR spectroscopic measurements have shown that some experiments directed towards the preparation of MeSbEt₄, Me₂SbEt₃, Me₃SbEt₂ and Me₄SbEt result in the formation of mixtures of these compounds because of alkyl group exchange between the initially formed pentaorganoantimony compound and the alkylating agent. Low-temperature PMR experiments on all the compounds $Me_nSbEt_{(5-n)}$ with n=1-5 have shown that rapid intramolecular exchanges occur even at -80° .

The ready occurrence of exchange reactions during the preparation of mixed pentaorganoantimony compounds is further illustrated by the formation of a mixture of methylvinylantimony(V) compounds in the reaction of trivinyldibromoantimony with methyllithium.

INTRODUCTION

The chemistry of pentavalent organoantimony compounds containing five antimony-carbon bonds has received increasing attention in recent years. Following the isolation by Wittig *et al.* of Ph₅Sb^{2,3} and Me₅Sb⁴, Russian workers reported the preparation of a series of pentaalkenyl-⁵ and diethyltrialkenylantimony⁶ compounds. In 1967 the preparation of Et₅Sb was reported by Takashi⁷. Very recently Hellwinkel and Bach^{8,9} have extended the earlier work³ on spirocyclic pentaorganoantimony compounds.

In this paper we describe a study of the preparation of the mixed methyl/ethyl pentaalkylantimony compounds, $Me_nSbEt_{(5-n)}$ (n=1-4).

RESULTS AND DISCUSSION

In an attempt to prepare Me_2SbEt_3 and Me_3SbEt_2 the chlorides $Et_3SbCl_2^{10}$ and $Me_3SbCl_2^{10}$ were treated with MeLi and Et_2Mg respectively, in diethyl ether

^{*} For Part II see ref. 1.

solution. However, both reactions resulted in the isolation of a slightly yellow liquid with a wide boiling range [$\sim 50-100^{\circ}$ (16 mm)]. PMR spectra of each of these products in benzene showed one broad ethyl proton resonance signal and a series of singlets due to methyl proton resonances, indicating the presence of a mixture of methyl/ethyl pentaalkylantimony compounds. Distillation of the Me₃SbCl₂/Et₂Mg reaction product using a spinning band distilling column afforded three essentially pure products, which were identified from their PMR spectra as Me₄SbEt, Me₃SbEt₂, and Me₂SbEt₃, respectively.

Similarly, the reaction of Et_4SbI^{11} with MeLi in diethyl ether resulted in the isolation of a yellow liquid. The PMR spectrum of this product, recorded in benzene solution indicated that MeSbEt₄ contaminated with ~20% of Me₂SbEt₃ and a trace of Me₃SbEt₂ had been formed. Distillation of the reaction product *in vacuo* did not give an effective separation of Me₂SbEt₃ and MeSbEt₄.

These studies complete the preparation of all compounds of the series $Me_nSb-Et_{(5-n)}$. Their boiling points as well as PMR chemical shift data are given in Table 1.

TABLE 1

BOILING POINTS	AND PMR	DATA OF	$Me_nSbEt_{(5-n)}$	(n = 0 - 5)
----------------	---------	---------	--------------------	-------------

Compound	B.p. [°C(mm)]	δ[CH ₃ (Sb)] (ppm) ^{ε,b}	
SbEt ₄	64(0.4) ^c		
MeSbEt₄	55(0.4) ^₄	0.45	
Me ₂ SbEt ₃	42(0.03)	0.46	
Me ₃ SbEt ₂	71-74(16)	0.50	
Me_SbEt	53-54(16)	0.54	
Me ₅ Sb	130–131(760) ^e	0.58 ^f	

^a Downfield from TMS at 27° in C₆H₆. ^b δ [CH₃CH₂(Sb)] for all compounds: 1.1–1.2 ppm. ^c Ref. 7, no b.p. determined. ^d Contaminated with ~20% Me₂SbEt₃. ^e Ref. 4, b.p. 126–127°. ^f Ref. 12, δ 0.7 ppm in CS₂ solution.

The PMR spectra of $Me_nSbEt_{(5-n)}$ (n=1-5) recorded in toluene- d_8 solution display only one singlet due to methylproton resonances even at -80° . The spectroscopic equivalence of all methyl groups which has also been observed for Me_5Sb in CS_2 solution at -100° (ref. 12), points to rapid intramolecular exchange of nonequivalent axial and equatorial methyl groups. (In the case of the compounds with n=1-3 it is theoretically possible for all the methyl groups to be either equatorial or axial, but the absence of rapid pseudorotation for these compounds seems very unlikely.)

The differences in the chemical shifts of the methyl protons in $Me_nSbEt_{(5-n)}$ (n=1-5) make PMR spectroscopy an outstanding method for determining the composition of mixtures containing such compounds. *E.g.* integration of the PMR spectrum of the Et₃SbCl₂/2 MeLi reaction product revealed the presence of MeSbEt₄, Me₂SbEt₃, Me₃SbEt₂ and Me₄SbEt in a ~2/10/6/1 molar ratio and a trace of Me₅Sb.

The formation of mixtures in these reactions is attributed to nucleophilic substitution of alkyl groups on antimony by alkyllithium or alkylmagnesium compounds. Whether a real ate-complex or a four-centre transition state is involved is not clear. However, both mechanisms are essentially similar in that the intermediate contains a hexacoordinate antimony atom. This type of reactions has been extensively studied, especially the reactions of tri- and pentaarylphosphor, -arsenic, -antimony and -bismuth compounds with aryllithium (cf. refs. 13, 14 and references cited therein). Nucleophilic substitution by methyllithium has been observed in the attempted preparation of Ph_4SbMe in which a mixture of Ph_3SbMe_2 and Ph_5Sb was formed⁴.

We have investigated the susceptibility of methyl/ethyl pentaalkylantimony compounds, $Me_nSbEt_{(5-n)}$ (n=0-5) towards nucleophilic attack by methyl- and ethyllithium or -magnesium compounds. Addition of Me_5Sb to a solution of methyllithium in diethyl ether results in a relatively slow methyl group exchange as demonstrated by PMR spectroscopy. At the magnet temperature (27°) the spectrum shows broadened methyl resonances for Me_5Sb and MeLi at $\delta 0.63$ and -1.75 respectively. The addition of Me_5Sb to a solution of Et_2Mg in diethyl ether results in the formation of a mixture of Me_5Sb to a solution of Et_5Sb contaminated with only a trace of $MeSbEt_4$. Likewise, experiments directed towards the preparation of Me_4SbEt gave mixtures of Me_5Sb , Me_4SbEt and Me_3SbEt_2 , whereas $MeSbEt_4$ appears to be less sensitive towards nucleophilic attack by MeLi.

These results point to the occurrence of alkyl group exchanges due to a combination of equilibria 1-5. The exchange must be slow, with the rate gradually decreasing upon replacing methyl by the more electron-donating ethyl groups.

Me₅Sb	+	Et~	⇆	[Me₅SbEt] ⁻	\Leftrightarrow Me ₄ SbEt + Me	- (1	1)
Me₄SbEt	+	Et ⁻	⇐	$[Me_4SbEt_2]^-$	\Leftrightarrow Me ₃ SbEt ₂ + Me	- (:	2)

$$Me_{3}SbEt_{2} + Et^{-} \Leftrightarrow [Me_{3}SbEt_{3}]^{-} \Leftrightarrow Me_{2}SbEt_{3} + Me^{-}$$
(3)
$$Me_{2}SbEt_{3} + Et^{-} \Leftrightarrow [Me_{2}SbEt_{4}]^{-} \Leftrightarrow MeSbEt_{4} + Me^{-}$$
(4)

$$Me_{2}SbEt_{3} + Et \implies [Me_{2}SbEt_{4}] \implies MeSbEt_{4} + Me \qquad (4)$$
$$MeSbEt_{4} + Et^{-} \iff [MeSbEt_{5}]^{-} \iff SbEt_{5} + Me^{-} \qquad (5)$$

Our results suggest that the possibility of exchange reactions must always be taken into account in the preparation of pentaorganoantimony compounds by alkylation of organoantimony halides. Thus the PMR spectrum of the crude reaction product obtained from trivinyldibromoantimony and methyllithium in diethyl ether shows the presence of Me₅Sb, but in addition three sets of methyl and vinyl proton resonances are present which can be tentatively assigned to Me₄SbVi, Me₃SbVi₂, Me₂SbVi₃. Therefore, we consider it likely that the earlier reported reactions of trial-kenyldibromoantimony compounds with ethylmagnesium bromide resulted in the formation of a mixture of compounds Et_nSb (alkenyl)_{5-n}, rather than of pure diethyl-trialkenylantimony⁶.

EXPERIMENTAL PART

General

All reactions were carried out in an atmosphere of dry nitrogen. The organoantimony compounds Me_4SbI^{15} , $Me_3SbCl_2^{10}$, Et_4SbI^{11} , $Et_3SbCl_2^{10}$, $(Vinyl)_3SbBr_2^5$, Me_5Sb^4 and Et_5Sb^7 were prepared as previously described.

The composition of the reaction mixtures was established by PMR spectroscopy. Spectra of 5-10% solutions in benzene, were run on precalibrated chart paper at either 250 or 100 cps sweepwidth, using a Varian HA-100 spectrometer. Tetramethylsilane was used as an internal standard.

Attempted preparation of trimethyldiethylantimony

Trimethyldichloroantimony (19.0 g, 0.08 mole) was slowly added to a stirred solution of 0.1 mole of diethylmagnesium in diethyl ether (100 ml). After 3 h of refluxing, the solvent was removed by distillation at atmospheric pressure using a 20 cm Vigreux column. Pentane (100 ml) was added to the reaction residue and after filtration and subsequent evaporation of the pentane a slightly yellow oil was obtained. Distillation in a spinning band column gave 2.5 g of tetramethylethylantimony, b.p. $53-54^{\circ}$ (16 mm) and 3.4 g of trimethyldiethylantimony, b.p. $71-74^{\circ}$ (16 mm). The residue appeared to consist of 3.5 g of dimethyltriethylantimony, b.p. 42° (0.03), decomposing at temperatures above 100°. The purity of these compounds was established by PMR spectroscopy. Yields based on antimony 15°_{0} , 19°_{0} , and 18°_{0} respectively.

Attempted preparation of dimethyltriethylantimony

By the procedure described above, methyllithium (34 mmoles) in diethyl ether (60 ml) was treated with 5.0 g (17 mmoles) of triethyldichloroantimony in diethyl ether (40 ml). The slightly yellow crude reaction product (2.2 g) appeared to consist of a mixture of MeSbEt₄, Me₂SbEt₃, Me₃SbEt₂ and Me₄SbEt (molar ratio 2/10/6/1).

Preparation of methyltetraethylantimony

Methyllithium (14.6 mmoles) in diethyl ether (20 ml) was added dropwise to a suspension of 5.3 g (14.5 mmoles) of tetraethyliodoantimony in diethyl ether (20 ml). After stirring for 30 min the solvent was evaporated and 2.05 g of a yellow liquid [b.p. 55°/(0.4 mm)] was distilled from the reaction residue. PMR spectroscopy revealed that methyltetraethylantimony contaminated with ~20% dimethyltriethylantimony had been formed. (Yield based on antimony $\approx 60\%$.)

Attempted preparation of tetramethylethylantimony

Reaction of tetramethyliodoantimony with ethylmagnesiumbromide in diethyl ether in a 1/1 molar ratio, resulted in the formation of a mixture of Me₅Sb, Me₄SbEt and Me₃SbEt₂ (molar ratio 4/6/3) and a trace of Me₂SbEt₃.

Attempted preparation of dimethyltrivinylantimony

Methyllithium (20 mmoles) in diethyl ether (20 ml) was added dropwise to 3.6 g (10 mmoles) of trivinyldibromoantimony in ether (20 ml). After stirring for 30 min the solvent was evaporated at -20° and pentane was added to the reaction residue. The precipitate of magnesium salts was removed by filtration. The filtrate afforded after evaporation of the pentane at -20° , 1.1 g of a pale yellow oil, which at a bath temperature of 100° was distilled (0.1 mm) into a -78° trap. The PMR spectrum of this reaction product in benzene- d_{6} indicated the presence of Me₄SbCH=CH₂, Me₃Sb(CH=CH₂)₂ and Me₂Sb(CH=CH₂)₃. [δ CH₃(Sb) at 0.62, 0.64 and 0.68 ppm respectively]. A singlet at 0.58 ppm revealed the additional presence of a considerable amount of Me₅Sb.

Warning

In one experiment a serious detonation which completely destroyed the apparatus occurred during distillation of a 25 g sample of Me₅Sb at atmospheric pressure

(temperature of the heating bath $\approx 160^{\circ}$). It is thus advisable to distil Me₅Sb and other pentaalkylantimony compounds at reduced pressure.

ACKNOWLEDGEMENTS

This research was supported by N.V. Billiton Maatschappij. The authors are much indebted to Professor G. J. M. van der Kerk for his stimulating interest. Thanks are also due to Mr. H. F. Martens for experimental assistance.

REFERENCES

- 1 H. A. MEINEMA, E. RIVAROLA AND J. G. NOLTES, J. Organometal. Chem., 17 (1969) 71.
- 2 G. WITTIG AND K. CLAUS, Justus Liebigs Ann. Chem., 577 (1952) 26.
- 3 G. WITTIG AND D. HELLWINKEL, Chem. Ber., 97 (1964) 789.
- 4 G. WITTIG AND K. TORSELL, Acta Chem. Scand., 7 (1953) 1293.
- 5 A. N. NESMEYANOV, A. E. BORISOV AND N. V. NOVIKOVA, Izv. Akad. Nauk SSSR, Otd. Khim. Nauk. (1960) 147,952, (1961) 612,1578; Izv. Akad. Nauk SSSR, Ser Khim, (1964) 1202; Chem. Abstr., 54 (1960) 20853d, 24351a, 55 (1961) 22100c, 56 (1962) 4792d, 61 (1964) 12032f.
- 6 A. N. NESMEYANOV, A. E. BORISOV AND N. V. NOVIKOVA, Izv. Akad. Nauk SSSR, Otd. Khim. Nauk., (1961) 730; Izv. Akad. Nauk SSSR, Ser. Khim, (1964) 1197; Chem. Abstr., 55 (1961) 22101e, 61 (1964) 12032a.
- 7 Y. TAKASHI, J. Organometal. Chem., 8 (1967) 225.
- 8 D. HELLWINKEL AND M. BACH, J. Organometal. Chem., 17 (1969) 389.
- 9 D. HELLWINKEL AND M. BACH, Naturwissenschaften, 56 (1969) 214.
- 10 G. G. LONG, G. O. DOAK AND L. D. FREEDMAN, J. Amer. Chem. Soc., 86 (1964) 209.
- 11 R. Löwig, Justus Liebigs Ann. Chem., 97 (1856) 327.
- 12 E. L. MUETTERTIES, W. MAHLER, K. J. PACKER AND R. SCHMUTZLER, Inorg. Chem., 3 (1964) 1298.
- 13 G. WITTIG AND A. MAERCKER, J. Organometal. Chem., 8 (1967) 491.
- 14 H. DANIEL AND J. PAETSCH, Chem. Ber., 101 (1968) 1451.
- 15 H. LANDOLT, Justus Liebigs Ann. Chem., 78 (1851) 91; 84 (1852) 50.

J. Organometal. Chem., 22 (1970) 653-657